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Abstract

Despite a growing number of powerful techniques for analyzing networks, network re-
searchers often find themselves in need of simple and efficient ways to communicate their
results to a nonprofessional audience.

How can we visualize network structures in a simple manner while controlling the location
of errors which may result from such simplifications ?

We propose a family of strategies, that includes at least three different steps:

1. the choice of simple geometric shapes as a priori constraints to limit the permissible
spatial locations of network nodes

2. the choice of a specific structure characteristic as a criterion for optimization

3. a parsimonious algorithm to optimize the spatial distances between the elements of var-
ious sets contained in the network data.

Starting with simple examples of social structures, we will demonstrate that such strategies
work well. Examples from ’real world data’ will show that this is a practical way to handle
even quite complex data.

*Revised version of a presentation at the 3rd European Conference for Network Analysis, Muenchen, 1993.
Thanks to Cynthia Lehmann for revising my english manuscript.

More information about network visualization is available via Mosaic under following URL:
http://ww. npi - f g- koel n. ngp. de/ ~l k/ netvis. htm
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Despite a growing number of powerful techniques for analyzing networks, network researchers
often find themselves in need of simple and efficient ways to communicate results to a nonprofes-
sional audience.

From the beginning, network analysis has been accompanied by more or less accurate attempts
to visualize structure, mostly grounded on an intuitive understanding. There are many examples
in the literature where simple geometric shapes (lines and circles) have been used to illustrate the
underlying structure of datasets.

What we want to do is follow this tradition but in a systematic and automatic way by proposing
a family of algorithms which try to grasp the core of the underlying structure. If they do exactly
this, they are cheap in terms of computational demands.

How can we visualize network structures in a simple, systematic and parsimonious manner and
check at the same time for errors which may result from such simplifications ?

After some general remarks about simplification and its problems from the perspective of
model building, we will review different types of information that can be used to visualize net-
work structures and propose how such information can be fitted into a constrained model space
and how to handle errors.

A second part of this paper will analyze how the proposed procedure works for handmade
toy examples containing simple structures and then proceed to compare results from the proposed
algorithm with those of an extensively studied dataset.

Finally, we will apply the algorithm to complex ’real world datasets’ and demonstrate its use-
fulness, when introducing a priori designs of the solution space.

1 Simplification

Many statistical procedures try to get most of our data (and often provide us with more information
than we actually need to answer our scientific hypotheses). A common strategy is to reduce the
amount of information by fitting it into more simple concepts: clouds of points are represented by
best fitting lines, complex similarity structures are represented in the form of binary trees.

The strategy we follow in this paper is to constrain the solutions to simple patterns, patterns
which are known to put relatively little demand on the perceptual skills of an audience.

This should not be misunderstood as an argument for replacing more elaborated, statistically
well grounded procedures, but for supplementing them with a family of ’low cost’ tools. Such
tools serve their purpose when they are able to grasp the most important features of the underlying
information.

A general expectation from the perspective of model building is that the more simple a model
and the more restricted the set of its solutions, the likelier we are to end up with a very poor fit of
the empirical data. Of course this will depend on our data.

On the other hand even a poor model can be useful to some degree, depending on whether it still
reflects the most important features of the underlying structure and misplaces only less important
elements. This assumes an algorithm which explicitly takes some critera of structure into account
and focuses on solving the fit for the core of the structure first, proceding to less important elements
at a later stage.
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1.1 Mode

We have observed that circles have been widely used in the literature to illustrate network results.
There is at least one formal argument which helps us to understand why. If the elements of a set of
nodes are equally spaced onto a circle, the sum of distances from each node to all other nodes is
equal.

This seems to be a particularly favorable way to illustrate connections in a network. It allows
even naive observers to perceive the contrast between a specific solution an the idealized pattern
from which it deviates. (as an easily perceivable null hypothesis). This would also mean that other
shapes could be used for specific problems as long as they offer regularity, like triangles or squares.

Constraining the possible solution to a set of locations being a member of a specific shape
specifies at the same time a distance matrix between all permissible positions of the model.

If p is the number of available positions in the solution space, the simple model can be described
by the distances between all permissible positions, a matrix Df},,p].

1.2 Data

Typical network data describe one or two sets of nodes and the relations among, respectively
between the nodes. The data do not necessarily contain, however, any information about the nodes
themselves.

A typical problem which is solved by many network techniques is to classify the nodes on the
basis on their direct or indirect links or even more complex information such as similarities or
distances.

Since an adjacency matrix is a matrix of 1-step distances, we can interpret it as a distance
matrix Dy, ) describing the distances between two sets of nodes, where m is the number of nodes
in the row set and n the number of nodes in the column set. All directly connected pairs have an
entry of one and all unconnected pairs an entry of zero, indicating the absence of a relation.

There is no reason not to use other distance matrices, which usually contain richer information
than the adjacency matrix of a graph: the reachability matrix as a graph-theoretic distance measure
or even similarities or distances resulting from more complex operations.

Roger Shepard’s (1972) taxonomy of principal datatypes as a basis for muldimensional scaling
procedures provides the concepts necessary to distinguish the basic information from technical
transformations applied to yield an empirical distance matrix, which allows a fitting algorithm to
find an optimal solution for a given model space.

2 Optimization

2.1 Measuresfor Structure

The choice of a measure for structure depends on what is to be conveyed to a particular audience.
The algorithm will try to do its best to fit the empirical distances D into the space of the permissible
target locations of the model which is described by D*.

There is a large number of centrality concepts readily available, which describe with statistics
what people intuitively look for when they visually inspect graphical representations of network
data.
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A simple concept is Freeman’s degree of centrality, based on the rows of the adjacency matrix.
His concept of closeness, which evaluates centrality on the basis of the matrix of geodesics, is more
informative, additionally taking the shortest indirect distances into account (Freeman (1979)).

Regarding measures of centrality there is a particularly intense discussion of how these indices
relate to the concept ’social power’, and there exist advanced formal concepts how to approach this
theoretical problem methodologically. (Bonnacich (1987) or Friedkin (1991)).

2.2 Controlling the Location of Errors

In a simple case the model space D* allows for as many positions in two-dimensional space as
there are nodes in your data. Most likely under the given constraints this will not make it possible
for each node to take a position where its overall distance in the model space (to all nodes to which
it is linked directly) is minimal.

While this is the basic problem of trading simplicity for exactness, we are willing to sacrifice
exactness to a certain degree if we force the solution into a constrained space. A pragmatic solution
to this problem is to try to get as much exactness as possible under the given circumstances: for
the visual inspection it is often sufficient if the most important elements are placed best, i.e. are
located in the most central positions available in a model space.

This also means that we are willing to accept errors if they occur to structurally less important
elements: if not possible we are willing to have them misplaced to a certain degree.

The general idea of controlling where the errors are placed in the model space means using
the optimization criterion itself to specify priorities for misspecification: if the structurally most
important elements are placed first, less important elements are forced to the remaining positions
under more restricted alternatives for positioning.

Depending on the quality of your data, such a strategy might save you from interpreting white
noise contained in your data, if you expect noise to affect mainly the periphery of the underlying
structure.

2.3 An Algorithm

The general idea of the proposed algorithm is to place the structurally most important elements
first and not to allow less important elements to change the locations assigned to more important
elements. This reduces the amount of computations necessary to a considerable degree. While this
works perfectly for data where no two nodes have the same structural importance, i.e. where there
is a lot of structure in the empirical data , care has to be taken for less structured data: when there
are ties in the rank orders of importance, it means that there are nodes that cannot be distinguished
from each other.
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In these cases the implementation of the algorithm should take care to assign the priority se-
for each set of indistinguishable nodes for different iteration steps. If there is
little or almost no structure in the data, the advantage in computing demands is entirely lost: one
has no choice there but to evaluate all possible permutations of locations for an optimal solution.
Finally it should be pointed out that the algorithm uses only rankorders of the overall distances
in the model space, which makes it quite robust to different designs of the solution space as long
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repeat step (2-5) until all elements have been assigned
unmark all nodes and repeat step(2-6) several times

as these designs provide enough variation in the distances among all target locations.
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3 Examples

3.1 Toy Examples
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Figure 1: Toy examples: two cliques and a star

The first feature we would like to illustrate is that the proposed algorithm is able to visualize
the underlying structure of handmade’ examples containing idealized structure only.

Figures 1 and 2 provide the solutions for two such toy examples. The first example contains
two cliques which are linked by a star {B5}, having direct connections to all other nodes in the
system. The second example again contains two cliques, but it differs from the first in that there
is one node in each of these cliques linked to the other clique. Nodes {B5} and {B6} bridge the
gap between the otherwise unconnected subsystems {B1, B2, B3, B4, B5 } and {B6, B7, B8, B9,
B10}.

In both examples we find that the cliques are placed contiguously on the circle of the solution
space, while the elements, linking the two subsystems are placed in between.

/R G /) D)e5
B1| 1 1/ 1) 1 1| o[ o/ 0| o] 0
B2| 1/ 1) 1/ 1/ 1 0/ 0/ 0 0| 0
B3| 1/ 1) 1/ 1/ 1/ o[ 0/ 0 0| 0
B4l 1/ 1) 1/ 1/ 1 0/ 0/ 0 0| 0
Bs| 1/ 1) 1/ 1/ 1/ 1/ 0/ 0 0| 0
B6| 0/ 0 0 0 1] 1|1/ 1 1|1
B7| 0/ 0 0/ 0| 0| 1| 1| 1/ 1| 1
B8 0/ 0 0/ 0/ 0 1| 1| 1 1|1
B9 0/ 0/ 0 0| 0 1| 1| 1/ 1| 1
B10l ol ol ol ol ol 1/ 1/ 1/ 1/ 1

Figure 2: Toy examples: two cliques and a bridge
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3.2 A Wsdl-Known Example

A more complex and well-studied dataset is that of Doreian (1989), which describes the structure
between politicians engaged in decision-making in a county in the American Midwest. This dataset
has been extensively studied using various analytic procedures (Doreian (1988), (1989), Doreian
and Albert (1989)), so that the scope and the subtleties of its solutions are quite well known. A
reanalysis with our algorithm is therefore a kind of validation for our procedure. The comparison
with the outcomes of various other analytical procedures also helps us to understand, how our
algorithm works.

Doreian’s network is made up of the fourteen most prominent political actors of a Midwestern
County engaged in making decisions about the construction of a new jail. Seven of these make up
the County Council which is the legislative and taxing authority of the county. Members serve for
four years, with one of them as the Council President, the other six being labeled Council 1 through
Council 6. Two of these lost their reelection bids: the Former Council President and the Former
Co President. Other actors are the County Executive as the chief officer of the county, the County
Auditor responsible for the county’s administration, the elected Sheriff as the law enforcement
officer and the County Prosecutor, the chief legal officer of the county.

Doreian and Albert (1986) hypothesised that the political actors would be partionable into two
camps. One would be associated with the County Executive, while the other would be associated
with the County Auditor. Their second hypothesis was that the distribution of votes would be
conditioned by the partitioned network of strong ties among the political actors. Both hypotheses
were confirmed, leading them to conclude that the structure of the network of strong political ties
was responsible for the prolonged inaction of the County Council.

.. on the right the diagram is a clustered set of five points containing the County
Auditor (B), while the left contains a clustered set of seven points containing the
County Executor (A). ... In the County Auditor’s alliance, Council 5 (I) and Coun-
cil 6 (J) occupy the same location. The Council President H is located close to B and
the City Mayor (M) can be grouped with the other four points. In the left hand cluster,
the Sheriff (C) and Council 4 (G) are close, as are Council 1 (D) and Council 3 (F).
The County Auditor (A) can be grouped with C, G, D and F. Finally Council 2 (E)
and the County Prosecutor (N) join the cluster but at a greater distance. At the center
of the Euclidian space is the Former Council President (L) with the Former Council
member (K) at the periphery of the diagram. p. 285 f.

In Figure 3.2 we present our solution for Doreian’s political actors * , yielded by applying our
algorithm to the solution space of 14 equally spaced locations on a circle, which corresponds to
the number of actors in the network.

We used the degree of centrality to specify the priority sequence of how nodes enter into the
computations. This makes possible errors likely to occur only for peripheral actors.

There are the same two cliques as identified by Doreian: the A cliqgue { A,C,D,E,F, G, N }
and the B clique { B, H, I, J, M }. The Former Co President { L }, as the most central actor in the
network, is located between the two subsystems A and B, with the Former Council {K} attached

to {L}.

1The size of the nodes in this and all following figures is proportional to the sum of both the in- and outdegree of a
node. This characterizes a node by all direct activities it is engaged in and reflects the direct component of centrality.
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What is different, however, in Figure 3.2 is the ordering of nodes in each of these cliques. This
is not completely surprising, since Doreian computed his MDS solution on the basic of geodesics
(using the shortest graph-theoretic distances between all pairs), while our solution is based on the
direct links only. In our case, it is evident that the boundary spanning actors {M,H} and { A,
D, F } in each of the cliques are located closer to the center of the subsystems, while completely
peripheral actors *buried with the alliances’ { G, N, E, K }, are found on the subsystem’s periphery,
with exception of {E}.

A further test of our algorithm is to use the same graphtheoretic distance information that
was used by Doreian. As this information accounts additionally for the shortest indirect links
between any actors, it will raise those actors in the rank-order of centrality (closeness), who occupy
boundary spanning positions.?

If we use the rank-order in ’closeness’ to specify the priorities in which nodes are taken into ac-
count, ’boundary spanners’ should move towards the intersection of both subsystems. The results
of this enhanced solution are shown in Figure 3.

If we view the ordering in the second solution from the position of {L}, {B,H,J,M,1} is changed
to {B,H,J,I,M) whereas {N,F,E,C,D,A,G} is changed to {D,E,F,N,G,C,A} . With the exception of
{F}, who is located in between {D} and {A}, the results of this analysis have become similar to
Doreian’s MDS solution and mimic even the internal organization of Doreian’s MDS clusters to
some degree.

The primary focus in this section has been to demonstrate that the algorithm yields acceptable
results when compared to more powerful analytic procedures. We have shown, that our algorithm
is able to find cliques or clusters of cohesion. We have demonstrated that it can use quite extensive
information, and, that the results in such cases mimic the results obtained with more powerful
analytic procedures, despite the given constraints of a strongly restricted solution space.

We have argued that the real virtue of the proposed procedure is that the algorithm works
on an a priori constrained solution space, giving us the means to control the complexity and the
design of a solution. While this may not have become evident in this section, we will try to
demonstrate exactly this in the next section, when we use the proposed strategy to visualize more
complex datasets and use the outlined procedure as a building block for more complex designs of
the solution space.

2The two different rank-orders of centrality are listed in Table 8: for direct links the algorithm proceeds according to
the rank-order given in the column *Degree of Centrality’, while for geodesics the rank-order given under ’Closeness’
is used. As the reader can verify, the ’boundary spanners’ have higher ranks (are more central) when geodesics are
used.
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3.3 Complex Examples

The case of interest here is a system of three organizational systems for which a complete ma-
trix of interlocks between their advisory bodies has been reconstructed on the basis of available
documents.

The specific missions of the subsystems as they are laid down in their organizational charters
are basic research, implementation of large-scale projects and applied research. There is an on-
going political discussion about whether the overall design facilitates an efficient transfer of basic
knowledge to more applied levels and industry.

are numerous opinions on how and whether such a system can be adequately governed and
its overall efficiency enhanced, and while these opinions draw on an almost infinite number of

OS_HIUML

o Fhl_IUGT o FhI_IPK

 — o Fhi_IeF
o Fh_ITA o Fhi_iAP

A system of three Research Organizations (A,B,C) and their relations to various committees and
organizations giving recommendations for science policy (upper right circle) (D)

Figure 5: A System of Organizational Systems
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causes and explanations, knowledge about the system’s actual structure and its actual patterns of
coordination are sparse and hidden in many dispersed documents.

Without our going into detail, it seems worthwhile to simply describe the system as a whole on
the basis of the more or less institutionalized relations in and between its components. This will
eventually allow us to locate coherent boundary spanning subsystems. Such a finding could prove
quite useful for the organizations when they want to articulate their situation vis-a-vis one of several
commissions which are installed for setting priorities for the entire system and for redistributing
money between the subsystems.

The network data of the total system can be expected to reflect part of the inner structure of each
of the systems, while the intersystem domain can be expected to reflect partly relations between the
top levels of the subsystems and partly the disciplinary coordination between members of different
subsystems working in similar substantive domains.

Choosing among the various alternatives for visualizing this dataset, we have decided not to
start from the systems perspective and decompose the total system using the empirical network
information, but to contrast the empirical data with the more commonly understood institutional
layout as it corresponds to the formal charters of the subsystems.

This has lead us to assign each of the subsystems to different but equal-sized shapes, based on
the common a priori understanding and formalized design. The shapes themselves are organized
to form a regular pattern. By doing this, we have constrained the solution for the total system in
various ways: a member of subsystem A may only be placed on one of the permissable locations
of shape A, the same holding true for members of the other a priori sets B, C and D.

The algorithm itself exploits the full matrix describing the entire system. In order to optimize
for the degree of centrality a member of A, B .. C has in the entire system, it tries to place the
most central elements first. The centrality of each actor reflects its embeddedness into the local
subsystem as well as its links into the global system. The solution will show that position in the
target space which minimizes both the internal and external relations 3.

The result is found in Figure 5. It exhibits a considerable amount of ordered information: nodes
with no intersystem orientation are moved to the nonadjacent locations of each shape: the entire
system’s periphery. Players in the intersystem domain are oriented toward their main partners in
the other shapes. Furthermore, organizations with access to more than one of the neighbouring
systems are placed in between.

While we find the overall result to be more impressive than we had hoped for, and while it
has proven to be useful for our purposes, Figure 5 also exhibits areas in which the placement of
elements has not be carried out in such a way that the location of each single element is always
best: an indicator of a too-rigorously constrained solution space. Depending on the degree of out-
ward orientation in the subsystems, it happens that organizations are moved towards the periphery
despite being players in the intersystem domain. These misplacements are errors that result from
a solution space which does not provide enough positions on the adjacent side of the shape. Nev-
ertheless, even these errors are controlled to the degree that such elements differ in their (ranks) of
centrality, which the proposed algorithm makes up for. 4

3To prevent unwanted weights from entering into the optimization procedure, the algorithm locates each of the
organizational shapes on a second circle, choosing the diameters of the larger circle to correspond to the diameters of
the shapes representing the single systems.

4While Figure 5 was one of the first results we achieved with our algorithm, there is also some further criticism
because circles C and D seem to be interchanged. This results from using a square arrangement for the four circles.
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A strategy to enhance a solution in terms of fit (to avoid misplacements as they occur in Figure
5 at the bottom left circle) is to enlarge the degrees of freedom in the design space. This can be
done by increasing the number of permissable locations in each of the shapes. If there are 10
nodes in subset A, the algorithm may now choose among 15 equally spaced positions to locate
each single element for its minimal overall distance in the target shape for A .

Because the diagonal whithin a square is longer than one of its sides, the overall distance for the total system could
have been reduced by interchanging C and D. For an automatic solution, we would have to use a two-level strategy:
first to assign each of the four a priori blocks to their best fitting shape, and then to rearrange the nodes in each of the
subsystems in a second step.

&)

A System of three Research Organizations and the participation of the 25 most significant
industrial companies in their advisory committees. The number of spatial positions has been
enhanced by 50 percent.

Figure 6: An organizational system and its interface to industry
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The results of such a modification can be seen in the next example. Figure 6 tries to visual-
ize the three organizational systems of the previous example and their interface with the 25 most
important industrial partners (having more than one link into the system). These industrial part-
ners can be expected to have some effect on the coordination which occurs in the total system’s
outcome.

The number of (equally spaced) positions available on each shape has been increased by 50
percent, while in the previous example there were exactly as many positions in the solution space
as there were elements in each of the systems.

As we have no information on the dependencies among the industrial actors (the relations
available are only the relations to each of the three organizational systems (a rectangular matrix),
we have chosen a larger circle to constrain the placement of the industrial partners, surrounding
the internal system.

As Figure 6 shows, all of the industrial partners crowd the southern hemisphere of the outer
circle, while the north is unpopulated: all industries linked to the inner top circle B have also ties
with either A or C.

At the same time, the placement of the organizations in the inner circles is very informative:
while the members in the inner top circle B crowd the southern locations only, most of the elements
in the lower right circle A have moved north: both (A and B) seem to build the inner core of the
total system, while almost all members of C, the lower left circle, have moved west i.e. are almost
exclusively linked to industrial partners.

Interesting phenomena can be detected for A and C, the two lower circles of the inner system.
There are three nodes in the north east region of C which are connected to the inner core, while the
top-level organization of C takes an intermediate location north-northwest: an appropriate place for
organizations having a balanced ratio of ties to the inner core as well as to industrial organizations.
For A, the lower right circle, we find only one single node to be placed in the south east section,
indicating that this organization is linked to more industrial partners than to research organizations.

Focusing on the western sphere of A, we find a large node (having many ties) in the south west
without direct links to the adjacent members of C. In this case, the short intersystem distance in
the model space is not based on direct access but on the structural equivalence of the south east of
C and west of A: nodes are placed close to each other when there is an overlap in their ties to third
partners (industrial actors holding seats in both organizational systems) even if there are no direct
links.

Looking at the most important industrial actors, whose importance can be read from the size
of their nodes (symbolizing the number of links they have into the inner systems), we find the
important ones to have access to the inner core. Without our a priori contraints of the the region of
minimal distances for these would have been somewhere in between the inner circles, the adequate
location for potential intermediaries between the inner circles. On the other hand, our constrained
solution contains interesting information, too. As the distance to the center of the entire system is
equal from all locations of the outer circle, the "best’ of the available locations for industrial actors
which have access to the center is the one in which they can get closest to most of the research
organizations in which they hold seats. The actual solution is therefore informative regarding the
main orientation of these actors.

Characterizing the total system on the basis of its ties among boards of directors and advisory
committees, we find an inner core which is almost exlusively formed by members of A and C (the
upper and lower right circles) with only few intermediaries of B (the lower left system) attached.
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While this could indicate that there is too little transfer into the lower left system, we observe at the
same time that the most important industrial actors which we have forced by design to the outer
periphery, have links to the inner core, and are thus at the same time intermediaries between the
inner core and the lower left.

4 Conclusions

Throughout this paper we have followed the idea of enhancing communication of network results
by approaching the complexity of visualizations. We have proposed an algorithm and shown that
it finds cliques and clusters of cohesion for simple structures and also for more complex datasets.

Due to the fact that this algorithm uses a precedence criterion to attach errors to structurally
less important elements, it gives us the opportunity to work with highly restricted solution spaces,
while ensuring that the visualizations grasp the most important parts of the underlying structure.

The formal procedure itself can be applied to any distance-type information derived from net-
work data. These data may differ in the richness of information they provide, moving the focus of
visualization from direct links only to the possible consequences of indirect links. Therefore the
road to more theory-guided centrality measures in the future is open.

Moving to large and more complex networks, we have demonstrated that the outlined procedure
can be used as a building block to approach networks of networks: we have used additional a prori
information to assign nodes to several shapes. The algorithm itself can handle the information even
in these cases. It tries to use the empirical information on the basis of the a priori constraints to fit
the data.

As a priori designs affect the distances in the model space and thus the evaluation of the min-
imal positions, more knowledge and experience is needed to fully exploit the range of alternative
designs.

Visualizations need not to be perfect in terms of fit but fulfill their purpose when they guide
the audience to the most important characteristics of the underlying subject. Nevertheless thinking
in terms of a sequential approach from simple illustrations to a parsimonious model, we would
benefit from more guidance on how to find the ideal balance between simplicity and fit. As this
point we think of rank correlations between the model and empirical distances, but it is still unclear
whether they can serve to sort out the best means by which we can expect to find this balance: by
increasing the degrees of freedom or by using alternative designs. If we had such criteria, they
could also help us to choose among a variety of alternative designs.
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Figure 7: Political Actors (Doreian (1988)
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Figure 8: Degree of Centrality and Closeness (geodesics)
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